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Figure 1: In purpose-first programming, learners are supported to write and understand code easily with scaffolding based on
a small number of common, domain-specific code patterns.

ABSTRACT
Conversational programmers want to learn about code primarily to
communicate with technical co-workers, not to develop software.
However, existing instructional materials don’t meet the needs of
conversational programmers because they prioritize syntax and
semantics over concepts and applications. This mismatch results
in feelings of failure and low self-efficacy. To motivate conversa-
tional programmers, we propose purpose-first programming, a new
approach that focuses on learning a handful of domain-specific
code patterns and assembling them to create authentic and use-
ful programs. We report on the development of a purpose-first
programming prototype that teaches five patterns in the domain
of web scraping. We show that learning with purpose-first pro-
gramming is motivating for conversational programmers because it
engenders a feeling of success and aligns with these learners’ goals.
Purpose-first programming learning enabled novice conversational
programmers to complete scaffolded code writing, debugging, and
explaining activities after only 30 minutes of instruction.
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1 INTRODUCTION
Enrollment in undergraduate computing courses is undergoing ex-
ponential growth, the majority of which is driven by students from
majors besides computer science [5]. Non-computer science majors
often want to learn programming for reasons other than prepara-
tion for a career in software development. One goal is to become a
“conversational programmer,” someone who knows enough about
technical topics to communicate with co-workers, but doesn’t often
program in their work [8, 9]. Conversational programmers can be
found in a wide variety of careers, including designers, product
managers, executives, and entrepreneurs [8, 68].

However, existing tools do not meet the learning needs of con-
versational programmers. Wang et al. found that after trying formal
and informal methods to learn programming, including courses,
tutorials, and forums, conversational programmers reported a lack
of benefit and feelings of failure [68]. In particular, conversational
programmers found that these programming learning resources
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didn’t align with their needs: instruction focused too much on
syntax and logic, and not enough on how to apply code to solve
problems [68]. Indeed, many theories of programming instruction
recommend an early focus on a language’s semantics, often in the
context of "toy" problems, reasoning that such content will prepare
learners to have a deep understanding of programs in any domain
[35, 59, 71]. For conversational programmers, it appears that this
learning approach leads into a "Turing tarpit", where "everything is
possible, but nothing of interest is easy" [47].

Conversational programmers have learning motivations that are
seemingly in conflict. They want to understand code that is authen-
tic to the work of real programmers [8, 68], which is often com-
plex. At the same time, they want to avoid a close study of syntax
and execution flow in favor of conceptual and application-focused
understanding [68]. Learning approaches designed for future pro-
grammers don’t work, but neither do approaches designed for non-
programmers. These approaches use techniques like programming-
by-demonstration (e.g. [7]) or visual programming (e.g. [29]) that
differ markedly from the text-based programming of professional
programmers and would likely be viewed as inauthentic.

To meet the needs of conversational programmers, Wang et al.
recommend that tools for these learners should avoid syntax and
logic, demonstrate a clear connection to an application context,
require only brief learning time, and minimize code writing [68].
We answer this call by describing and implementing programming
learning activities where conversational programmers can quickly
and easily create or understand authentic and meaningful code.
This approach requires new technical supports that enable conver-
sational programmers to focus on code’s purpose rather than its
semantics during programming learning.

1.1 Summary of contributions
1.1.1 Formative study to understand needs of conversational pro-
grammers. Through a series of focus groups and a survey, we found
that conversational programmers appreciate extra support when
learning to program, and value general understanding over a focus
on detail.

1.1.2 Introduction of a novel learning approach. To meet these
needs, we introduce purpose-first programming, a brief, authen-
tic, and purpose-driven learning approach designed to motivate as-
piring conversational programmers. By focusing learning on a small
number of common patterns in a domain-specific context, learners
are supported in quickly creating and understanding code that re-
flects expert practice. Scaffolds (assistive mechanisms [31, 67, 70])
provide guidance as learners write, debug, and explain code by
emphasizing the purpose of code patterns and ways they can be
modified.

1.1.3 Design of a proof-of-concept system and curriculum. To in-
vestigate the effectiveness of purpose-first programming for moti-
vating conversational programmers, we implemented the approach
in a proof-of-concept purpose-first programming curriculum that
teaches five patterns in the domain of web scraping. This system
provides information, structures, and real-time feedback that high-
lights how code achieves goals in this domain.

1.1.4 Findings from an in-lab usability study. We evaluated the cur-
riculum with seven novice conversational programmers. We find
that learning with purpose-first programming is motivating for con-
versational programmers because it engenders a feeling of success
and aligns with these learners’ goals. Purpose-first programming
learning enabled novice conversational programmers to complete
scaffolded code writing, debugging, and explaining activities after
only 30 minutes of instruction.

2 BACKGROUND
2.1 Conversational programmers have

particular learning needs
Conversational programmers were first named and identified by
Chilana et al. in a study of first-year students in a management
engineering program [8]. Instead of preparing to perform end-user
programming in their chosen field, these students wanted a basic
understanding of programming so they could communicate with
co-workers in careers such as project management, business lead-
ership, and entrepreneurship. While conversational programmers
expressed a low self-efficacy for programming, they were interested
in future programming learning and preferred to learn a more chal-
lenging industry-level language (Java) than a language designed
for non-programmers (Processing [23]), perceiving Java as more
useful, practical, and marketable.

Laterwork byChilana, Singh, andGuo surveyed non-programmers
at a large technology company and found a similar desire for "basic"
and "big picture" understanding of programming that can support
"high level" conversations with developers and clients [9]. Fifty-
four percent of respondents reported taking at least one formal
programming course, even though they did not major in computer
science or engineering, and 43% had spent time learning program-
ming on the job. In advice for future conversational programmers
in the software industry, 48% of respondents recommended that
students learn some programming.

Wang et al. interviewed a wide range of conversational pro-
grammers who had recently attempted to learn programming with
formal or informal methods, and found that most expressed feel-
ings of failure, believing they didn’t benefit from their learning
experience [68]. In an analysis of the reasons that existing formal
and informal programming learning didn’t meet the needs of con-
versational programmers, Wang et al. concluded that instruction
typically focused on syntax and logic and didn’t provide appropriate
conceptual and application-related content. Since conversational
programmers have many facets to their careers that don’t involve
programming, they have limited time to learn about code, resulting
in a need to quickly understand accurate and relevant information
about what code can do for them.

2.2 Programming tools for non-developers
avoid industry-standard code

A wide variety of technologies have been developed to make pro-
gramming more accessible to non-programmers. Such systems of-
ten involve block-based or other visual interfaces that make the
process of programming easier by reducing the potential for errors.
Block-based languages like Scratch [37, 38] eliminate the need to
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remember syntax since the jigsaw-like shapes for commands and
functions fit together in an intuitive way. Snap! [29] is another ex-
ample of a block-based programming language, with more features
than Scratch, including first class functions and support for multi-
media. Helena [7], a block-based language for web scraping tasks,
has helped sociologists, engineers, and public policy researchers
obtain data from websites.

A community of practice perspective [34] can explain why these
tools don’t meet the needs of conversational programmers. Lave
and Wenger described how desire for learning is motivated by the
alignment of learning activities with the tasks performed by people
in the communities learners want to join [34]. Sociologists value
data collection, and so learning Helena is relevant to the practices of
sociologists. Conversational programmers, on the other hand, want
to understand tasks that software developers complete [8, 9, 68].
Weintrop showed that even though Snap! allowed learners to use
advanced programming concepts like first class procedures, high
school students doubted its authenticity since text-based languages
are standard in the software industry [69]. Use of industry-standard
languages and text-based programming may demonstrate to con-
versational programmers that what they are learning is authentic
to their future careers.

2.3 Plans may be a more motivating way for
conversational programmers to think
about code

Soloway and his students used schema theory to identify program-
ming plans in the 1980’s [53, 57, 58]. Plans are chunks of code that
achieve particular goals, like guarding against erroneous data or
summing across a collection. There is evidence that both novice
and expert programmers think about code in terms of plans [56].
Student errors can be explained in terms of misunderstanding plans
[55, 63] and errors in composing plans [62, 64]. Over time, error
rates on plans decrease with practice [61], while error rates on
syntactic structures does not [50], which suggests that plans better
describe how students learn programming than syntax structures.

According to expectancy-value theory, motivation for an activity
is explained by expectancy of success in the activity and subjective
value for the activity [15]. Conversational programmers found that
existing instructional materials typically focus on lower-level de-
tails like syntax and execution flow [68]. Closely tracking code’s
execution requires a high cognitive load [12], resulting in a low
expectancy of success for some learners [11]. When thinking about
code in "chunks" [22] of programming plans, the difficulty of under-
standing code may be reduced, increasing expectation of success.

Activities designed to help learners understand syntax and ex-
ecution flow typically involve problems intentionally stripped of
context, so learners can focus on code semantics "without distrac-
tion" [36]. For conversational programmers, such problems have
low utility value [16] because the connection to activities in the
workplace is unclear [68]. By contrast, programming plans associate
a code pattern with a goal relevant to the user, making the purpose
of code evident. Domain-specific code plans have an even clearer
connection between code and application, potentially resulting in
a high value for plan-based learning.

Even approaches to teach non-programmers about “computa-
tional thinking” can focus on the structures of a programming
language rather than what code can achieve. While definitions
of computational thinking are debated, it often involves general-
purpose programming ideas, like ‘selection’ and ‘repetition’, or
practices, like ‘debugging’ or ‘remixing’ [4]. Computational think-
ing is typically described as a general skill that can be applied in
any programming situation. However, to meet the needs of conver-
sational programmers as described by Wang et al. [68], a learning
approach needs to clearly communicate how content is applicable
to a domain area.

Students programming in terms of high-level, domain-specific
code plans have successfully solved programming problems that
students programming in more traditional languages have not. The
Rainfall Problem has been challenging students for over 30 years,
with most studies finding less than 20% of students are able to solve
it successfully [52]. Fisler found that she could reliably get most of
her students successfully solving the Rainfall Problem by using a
high-level functional programming language [20]. Fisler explains
much of the success due to mapping the high-level functions to
domain-specific plans that were easily composed by the students
into a successful solution [21].

2.4 Other systems have provided plan- or
example-based support

The GPCeditor was a programming tool for students to support
them in learning Pascal programming through the specification
of goals and plans [26]. Students learned plans which they then
transferred into a more traditional Pascal IDE. SODA extended the
GPCeditor with support for program design and software engineer-
ing practices [32]. The GPCeditor and SODA focused on traditional
introductory programming learning, rather than supporting pro-
gramming learning in the context of a domain.

Emile provided adaptable scaffolding for building physics simu-
lations through HyperTalk programs [25]. Students in Emile con-
structed programs out of plans with slots which allowed for speci-
fying a plan for a particular purpose (e.g., to generate accelerated
motion for a given velocity and acceleration source for a given
object) through a supported process. Students still did not have
to learn the language syntax and semantics to be able to achieve
their purpose (the construction of physics simulations). Students in
Emile did learn physics, which suggests that a plan-based approach
to learning programming can lead to learning within the purpose
domain.

There is a long history of providing purpose-oriented support
in the form of examples or cases. The minimal manual approach
of Carroll and others [6] is built around providing examples of the
processes for common tasks. The examples are indexed by task,
like “how I delete text in my document?” or “how do I add a button
to my screen?” Evaluations of minimal manuals show that they
are successful (in terms of user productivity and satisfaction), and
are most successful when steps have to be inferred by the user
[2]. Minimal manuals have been used successfully to help non-
professional programmers succeed at programming tasks [1].
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3 FORMATIVE STUDY: UNDERSTANDING
CONVERSATIONAL PROGRAMMERS IN AN
INFORMATION MAJOR

Prior research profiled conversational programmers in a manage-
ment engineering major [8], but conversational programmers in
other undergraduate majors have not yet been studied. A growing
number of universities now offer Information majors to undergrad-
uates, covering content like data science, user interface design, and
other topics at the intersection of human activity and technology
[13]. Such programs seem likely to attract conversational program-
mers, who seek careers where they work with both technology and
people [8].

To understand the goals and learning preferences of conversa-
tional programmers studying Information, we performed a series
of focus groups and a follow-up survey with students taking a sec-
ondary data-oriented programming course taught by the School of
Information at a large university in the Midwestern United States.

3.1 Focus group results
Across four focus groups, we talked to eleven students (eight fe-
male, three male) about their goals with programming and what
learning approaches they felt best prepared them for their future.
We provided prototypes of Purpose-first programming activities as
probes [3] to gather feedback. The focus groups lasted 30 minutes,
and participants received a $25 Amazon gift card. Transcripts of the
focus groups were analyzed to identify "personas" [10] represen-
tative of students’ goals and preferences. We found two personas:
the conversational programmer and the analyst.

3.1.1 Connie the conversational programmer. Connie is interested
in a career in "user experience design" (P8), "project management"
(P11), or "digital strategy" (P9). She wants to be "informed about
coding" (P8) in order to "understand what the coders are doing
and what they can and can’t do" (P9) and "direct what the final
product should look like" (P8). But, she "[does]n’t want to be the
one actually coding" (P9). She wants to pass information "off to
my coder" (P10) who will do most of the programming. She also
believes that that coding knowledge "sets you apart" (P8) from other
majors and helps "establish yourself as a very credible person" (P11)
in the workplace.

As far as learning preferences, Connie is "more interested in
knowing that I can understand what code is doing than writing it
myself" (P9). She wishes there were "more questions where you
just look at code and choose the right answer, instead of having to
do it yourself all the time" (P10). She wants to learn in a way that
helps her understand "overall what the process is like to accomplish
certain things" (P9). She appreciates problems that "give you a basic
structure to start with" (P11), like mixed-up code problems [46].
When additional help is provided, like guiding comments in the
code, Connie is "not as overwhelmed" (P8).

3.1.2 Alyssa the analyst. Alyssa wants a career like "data analyst"
(P1) or "business analyst" (P7), where she can "use programming
to solve problems that people are facing" (P6). She "[does]n’t want
a job where I have to heavily do programming" (P1), preferring "a
mixture of programming and not really programming" (P6).

When learning, Alyssa thinks that "writing code, at least once
you know all the basics, is really helpful, because then you can recall
from memory" (P7). She feels that "being able to break it down and
see what each individual line of code does is really helpful" (P2).
She appreciates extra support "prior to starting writing a code
just because I think it breaks it down much better and it helps
me understand what the code is actually doing" (P2). However,
after getting some practice, "writing your own code might be more
helpful" (P6).

Alyssa took an introductory programming course from the com-
puter science department, but felt she was "coding the project just
to code the project" (P6) and "didn’t understand how any of the
coding [she] was learning applied to real life situations" (P2).

3.2 Survey results
We performed a survey of students in the same programming course
to understand if our findings from the focus groups generalized.
Forty students responded (29% of total enrollment). Participants
were offered a 1 in 5 chance to win a $10 Amazon gift card.

Using responses about participants’ future career goals and
planned job responsibilities, we split respondents into conversa-
tional programmers and non-conversational programmers. Partici-
pants who planned a future career as a software developer, analyst,
or who mentioned programming as a key job responsibility were
not considered conversational programmers (n=19). Participants
who planned a future career as a manager, designer, or who de-
scribed another position (e.g. CEO) and did not list programming as
a key responsibility were considered conversational programmers
(n=18). Thus, we are comparing the comments between participants
whom we classify as conversational programmers (like our Con-
nie persona) and those whom we classify as non-conversational
programmers (including analysts like our Alyssa persona and also
computer science majors). Three respondents did not complete the
questions about future goals and were not included.

Participants were asked to rank five programming learning activ-
ities (reading code, writing code, testing code, modifying code, and
solving mixed-up code problems) by their helpfulness in prepar-
ing them for their future. Conversational programmers most often
ranked code reading as the most helpful activity (8/16, 50%), while
code writing was the activity non-conversational programmers
most preferred (9/17, 53%). Non-conversational programmers over-
whelmingly found mixed-up code problems (also known as Parsons
problems [46]) to be the least helpful (15/17 ranked them last), while
conversational programmers were more mixed, with less than half
ranking them last (7/16).

Participants were asked to rank the usefulness of different types
of code writing activities that provided different levels of support:
writing code from scratch (no scaffolding), writing code with guid-
ing comments (some scaffolding), and filling in parts of nearly com-
pleted code (high scaffolding) (See Figure 2). Both groups ranked
writing code with guiding comments (some scaffolding, Figure 2b)
as the most helpful (11/16 of conversational programmers, 14/18 of
non-conversational programmers). However, non-conversational
programmers overwhelmingly ranked filling in mostly completed
code (high scaffolding, Figure 2a) as the least helpful (16/18), while
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(a) High scaffolding (fill-in) (b) Some scaffolding (subgoals provided) (c) No scaffolding (code from scratch)

Figure 2: Survey respondents were asked to rank and reflect on the usefulness of these code writing activities with different
levels of scaffolding (assistance). The directions for all activities were: "Complete the code that achieves the goal".

Table 1: Difference in attitudes about the highly scaffolded code writing problem (shown in Figure 2a) between conversational
programmers and non-conversational programmers.

Attitude p-value Conversational
programmers
who agree or
strongly agree

Non-
conversational
programmers
who agree or
strongly agree

“This type of problem is less overwhelming because if I had to do it on my own I would
have freaked out a little bit trying to remember what syntax to use, and what structure."

0.560 62.5% (10/16) 55.6% (10/18)

"I feel like if code is always provided in problems like this, I will just end up forgetting to
include things when I’m actually writing my own code."

0.036* 33.3% (5/15) 72.2% (13/18)

"This type of question helps me understand how certain types of code should be structured." 1.0 62.5% (10/16) 83.3% (15/18)
"I think if it’s your first time looking at a problem like this, something with this structure
would be more useful. But if you’ve been looking at it and working on it for a little bit,
then writing your own code would be more helpful."

0.046* 50.0% (8/16) 94.4% (17/18)

"I want to solve problems from scratch without being given any hint to what the final
solution should be."

0.103 18.8% (3/16) 38.9% (7/18)

"I prefer doing practice like this prior to writing a code because I think it breaks it down
and it helps me understand what the code is actually doing."

0.837 68.8% (11/16) 83.3% (15/18)

conversational programmers were more mixed about their prefer-
ences (4/16 ranked high scaffolding as the most helpful, 6/16 ranked
it as the least helpful).

This difference in preference about scaffolding was also evident
in survey participants’ responses to Likert scale questions about
their attitudes towards problems with this high level of scaffold-
ing (see Table 1). We found that agreement with certain attitudes
expressed by focus group members was significantly different be-
tween the two groups, according to a Mann-Whitney U test. While
both groups agreed that a code writing problem with high scaffold-
ing was less overwhelming and helpful preparation for writing code,
non-conversational programmers were more likely to be concerned
about their ability to write code on their own without additional
supports.

3.3 Conclusions from the formative study
Conversational programmers and non-conversational program-
mers’ differing goals inform the ways that they want to learn about
code. Conversational programmers desire a basic and conceptual
understanding of code, while non-conversational programmers
want the ability to write code on their own. As a result, these two
groups differ in the learning activities they value, and the amount
of help they want while completing programming tasks. Conver-
sational programmers prioritize code reading activities, and are
welcoming of additional scaffolding during programming learning.
Non-conversational programmers are more skeptical about heavy
support while learning, as they value being able to write code on
their own.
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4 DEFINING PURPOSE-FIRST
PROGRAMMING

Through our formative study, we found that conversational pro-
grammers appreciate extra support when learning to program, and
value general understanding over a focus on details. As P9 said,

"Even if I’m not necessarily going to remember how
to do every little thing, or maybe it takes a lot of
help for me to be able to accomplish something in the
code, at least what I’m taking away from it more than
anything is how a computer works, how overall what
the process is like to accomplish certain things."

To meet the needs of conversational programmers, we propose
purpose-first programming, a new learning approach designed to
meet the needs of conversational programmers by emphasizing
what code achieves while avoiding details of syntax and semantics.
The core units of knowledge in purpose-first programming are
programming plans [54, 56] drawn from the work of programmers
in a particular domain. Purpose-first scaffolds help learners learn
about andworkwith these plans so they can understand the purpose
of authentic code and write new programs quickly. A purpose-first
programming learning experience is driven by three design goals: it
should be brief, it should prioritize code’s purpose, and it should
be realistic with respect to expert practice.

4.1 Expanding the definition of a programming
plan to serve instructional needs

A programming plan is a commonly used code pattern, associated
with the goal the code achieves [54, 56]. Programming plans are a
powerful concept that integrates schema theory into the fields of
computing education and program comprehension. However, in
the literature, the definition of a "programming plan" is varied and
sometimes vague.

We propose the following more precise definition of a program-
ming plan to support instruction, assessment, and code writing
during purpose-first programming.

4.1.1 A plan is a frame with slots. The power of plans is that they
can be re-used by programmers over and over again. The choice of
what to modify and what to keep the same is crucial to applying a
plan successfully. We define a plan as a frame [42, 51] that contains
parts that can’t be modified, and parts that can. The areas of a plan
that can be changed are called “slots”. While prior plan editors
allowed only numbers or strings to fill a slot [25, 26], we will allow
slots to contain not only literal values, but also other code. This
allows plans to be nested.

4.1.2 A plan has subgoals as well as a goal. Since plans often con-
tain many lines of code, additional subgoals can likely facilitate
plan tracing, understanding, and integration. Subgoals describe
what a small section of code achieves [41]. Research has shown that
adding subgoals to code leads to better learning (improved retention
and transfer) in less time than without the subgoal labels [40, 41].
Evidence suggests that subgoal labels support self-explanation be-
havior, in that the labels give students the language to use when
explaining the programs to themselves [39, 41, 44]. Subgoal labels

are also effective in helping students solve and learn from mixed-up
code (aka Parsons) problems [43].

In purpose-first programming, each subgoal uses variables that
were defined previously, and/or produces variables to be used in
later subgoals. By tracing the input and output to each subgoal,
learners can trace purpose-first code at a higher level of abstraction
than evaluating each variable assignment and control structure [59].
Subgoals also suggest the way that plans can be combined: code
from another plan can be added in a way that satisfies the subgoal
label. In purpose-first programming, subgoal labels use language
from the domain to describe what the subgoal achieves.

4.1.3 Slot contents are described with domain-specific concepts.
Where a compiler sees only a string variable, humans understand
that the variable represents a URL, a DNA sequence, or an address.
Domain-specific concepts connect code to action in the real world.
Similarly, domain knowledge is essential for understanding a plan’s
goal and how slots can be changed. In purpose-first programming,
the content of slots is described in domain-specific terms. As a
result, the types of objects that can go into slots provide a list of
prerequisite knowledge for using a plan.

4.2 Providing "glass-box" scaffolding to
support learners as they work with plans

In “purpose-first” programming tasks, learners will always work
with authentic code patterns used by practitioners. This “chunking”
[22] of meaningful code is a scaffold that allows reasoning about
code to occur more easily and aligns with what we know about
the ways experts understand code [49, 56]. Instead of writing code
from scratch, purpose-first programmers will tailor and combine
plans. Instead of tracing code line-by-line to debug or understand
how code works, learners will infer code behavior across larger
chunks of code.

However, novice programmers don’t recognize or use program-
ming plans as readily as experts [56]. They need support to recog-
nize plans, combine plans, and identify which parts of plans should
be changed. Purpose-first scaffolds support these processes, making
understanding code and writing code easier.

A scaffold is an assistivemechanism that helps a learner complete
a task they wouldn’t be able to do without added support [67,
70]. Designing scaffolding for use by conversational programmers
requires balancing competing motivations: (1) these learners have
low self-efficacy [8] and desire assistance when coding, but (2) they
also want to learn complex content that is authentic to technical
workplaces [8].

"Glass-box scaffolds" can help these learners achieve both goals.
A glass-box scaffold provides support to help learners achieve
tasks, while not obscuring more complex, lower-level processes
[31]. Learners can then focus on higher-level learning goals, while
viewing information that can help with more complex tasks, if de-
sired. In purpose-first programming, the full code will be available
to the learners, demonstrating both authenticity and providing an
on-ramp to future learning. At the same time, purpose-first scaf-
folds will draw attention to key aspects of plans, allowing novices
to complete tasks while keeping cognitive load low [65].
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Figure 3: An example plan from the domain of web scraping. This plan achieves an authentic goal in its domain, and consists
of multiple subgoals and slots. The slots define the space of relevant domain knowledge needed to work with this plan.

5 DESIGNING THE PURPOSE-FIRST
PROGRAMMING PROOF-OF-CONCEPT
CURRICULUM

5.1 Identifying authentic, domain-specific
programming plans

In prior plan identification work, plans were most often developed
in the context of problems typical to an introductory program-
ming course (e.g. [54, 64]). In purpose-first programming, plans
are chosen to achieve domain-specific goals authentic to the work
of programmers. In order to identify these plans, the corpus from
which plans are drawn should reflect the workplace, not the class-
room.

5.1.1 Choosing a domain. Web scraping, or extracting data from
websites, is a common task for data scientists. During the formative
study, we found that web scraping tasks also have disciplinary
authenticity for students interested in conversational programming
careers like user experience design and project management. These
learners felt that the coverage of HTML and other web topics was
relevant to their goals.

Web scraping requires the use of multiple feature-laden libraries
(in our examples, we use the BeautifulSoup and requests Python
libraries). Even basic commands in these libraries involve complex
mechanisms, including instantiation of objects, list iteration, and
method calls that return custom object types. At the same time, web
scraping incorporates similar patterns that are slightly modified to
match each page’s layout. The fact that web scraping is semantically
complex but “planfully” simple makes it ideal for use in the proof-
of-concept curriculum.

5.1.2 Identifying plans. We collected a corpus of BeautifulSoup
web scraping files from a dataset of Github repositories collected in
October 2019 [14]. The corpus included Python files containing the
BeautifulSoup constructor and at least one instance of the Beauti-
fulSoup method find() or find_all(). After removing duplicate

files and files consisting of only unit tests, 100 files remained. We
generated our initial set of plans after an analysis of the first 50 of
these files.

We sought feedback on the authenticity of the plans in interviews
with two experts who have used the BeautifulSoup web scraping
library in their work. Both experts confirmed that all the plans
were useful in web scraping, and that they have used the plans in
their work. They also felt that useful web scraping tasks could be
achieved using only the plans, although they described several tasks
that would require use of additional plans, such as web crawling
and scraping image files. The experts also provided suggestions for
updates to deprecated libraries.

5.2 Platform
We developed the purpose-first programming proof-of-concept cur-
riculum using Runestone, an open-source ebook platform with
interactive feedback [19]. Runestone is a popular platform for in-
troductory programming learning that currently serves over 25,000
students a day. Instructors can create custom courses on Runestone
that incorporate a wide variety of interactive components, such as
runnable code and mixed-up code (Parsons [46]) problems.

5.3 Designing purpose-first scaffolds
Shifting the focus of instruction from syntax and semantics to
programming plans requires new interfaces for learning about code
and completing programming tasks. Theways that students interact
with code will be different. Instead of writing code by typing in text,
purpose-first programming learners will tailor and compose plans.
Instead of tracing changes in variables in memory, learners will
trace with goals and subgoals. Purpose-first scaffolds should keep
code fully visible, but direct attention towards key plan components,
like slots, goals, and subgoals.
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Figure 4: Slot highlighting, plan goals, and subgoals assist
learners as they debug this code.

(a) Learners remember parts of the plan that should be
changed

(b) Learners apply their knowledge to complete a plan

Figure 5: Practice activities contain subgoal label scaffolding,
and focus on knowledge about plan slots.

5.3.1 Highlighting demarcates plans and slots. While existing high-
lighting features emphasize code’s syntactic structures, we use high-
lighting to show code’s plan structures (see Figure 4). Perceptual
grouping of related symbols can improve performance in tasks like
algebraic calculations [33]. This suggests that highlighting code
that is part of the same plan and highlighting slots in a way that
associates themwith their natural language description in a subgoal
may improve problem-solving.

5.3.2 Practice activities support learners in tailoring plans. Typical
programming learning activities include writing code and predict-
ing the result of code execution [66]. Purpose-first programming
suggests new activities: identifying changeable parts of plans (see
Figure 5a) and filling in plan slots to achieve a goal (See Figure 5b).
These activities are quick to complete and minimize the opportunity
for errors while focusing learners’ understanding on key areas of
code. Instruction and activities describe code’s purpose in language
similar to that of plan goals and subgoal labels.

5.3.3 Examples and plan instruction are linked. To further empha-
size code’s purpose, all instruction in the proof-of-concept cur-
riculum is situated in examples. Across two examples of complete
programs, learners study all five plans. To make the connection
between plans and their context of use more clear, examples are
interactive: students click on each plan in the example program to
visit its instructional page and learn about the plan in detail (see
Figure 6).

5.3.4 Staged code writing supports learners in assembling and tai-
loring plans. In a traditional editor, learners type code character by
character. In purpose-first programming, learners make use of plan
structures to assemble and tailor plans.

Drawing inspiration frommixed-up code (aka Parsons) problems,
we developed a code writing activity in three parts (see Figure 7).
First, learners pick from a bank of plan goals and drag selected
goals into the correct order. Next, learners repeat this task, but with
plan code instead of goals. Finally, learners fill in the slots in the
code they have assembled.

5.4 How this prototype meets the design goals
5.4.1 Purpose-first programming is brief. Our prototype curricu-
lum offers a brief learning experience where students can learn
and apply the basics of web scraping in about an hour. This short
timeline is possible because no content is taught unless it helps
learners understand and modify one of a small number of plans.
For example, the official BeautifulSoup documentation begins by
explaining that a soup object is a nested data structure [48], but
in our purpose-first programming curriculum it isn’t necessary to
explain what a soup object is. That level of detail isn’t necessary to
assemble and tailor plans.

Our proof-of-concept curriculum is also brief because of techni-
cal supports. Links to plan information are available when solving
problems, so relevant examples are readily accessible. Key informa-
tion is made salient through annotations and highlighting. Learners
don’t write code from scratch, and instead tailor and arrange code
using the drag-and-drop interface.
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Figure 6: Instruction is situated in interactive examples. Learners first view and run a complete program example, then learn
about how each plan contributes to the full program.

Figure 7: Writing code takes place in stages. Learners first assemble plans, and then fill in plan slots.

5.4.2 Purpose-first programming prioritizes purpose. Conversational
programmers value "high-level", conceptual, and application-oriented
information about code [8, 9, 68]. This purpose-first programming
curriculum makes code’s purpose clear at three different levels.

At the level of entire programs, learners only see examples that
achieve a meaningful web scraping purpose. Examples are not "toy"
problems, but programs that could potentially be used by data
scientists. Examples are runnable, so learners can be assured that
programs truly work as intended.

At the level of individual plans, each plan is introduced in the
context of a full program, showing its relevance to useful code.
By grounding plan instruction in these examples (see Figure 6),
learners can see how that plan’s goal contributes to the program’s
goal, and understand the purpose the plan serves in the example.

At the level of the code within plans, annotation with subgoals
creates a natural language layer on top of code that explicitly de-
scribes code’s purpose. Code is available to view, but can be ignored
in favor of these descriptions of code’s purpose.
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5.4.3 Purpose-first programming is realistic to the work of program-
mers. Two features communicated the disciplinary authenticity of
the content in the prototype. First, learners were informed that the
curricular content was designed based on an analysis of Github
files and expert interviews. Second, code examples and activities
incorporated runnable code that scraped known websites, such as
RateMyProfessors.com, the local humane society, and faculty home-
pages. As a part of both instruction and assessment, participants
ran code and saw results returned.

6 EVALUATION
6.1 Study design
To evaluate the purpose-first programming proof-of-concept cur-
riculum, we performed an in-lab usability study with students plan-
ning to become conversational programmers. First, participants
completed instructional content where they learned five new plans.
A researcher guided them through the instructional content, read-
ing instructional text aloud and answering questions about the
exercises as requested. Next, participants completed writing, de-
bugging, and explaining problems that combined plans in ways not
seen in the instructional content. Participants were asked to per-
form a concurrent thinkaloud while completing these tasks. Finally,
participants completed a semi-structured interview to understand
each participants’ feelings of success during the activity and value
for this type of learning.

The study was conducted over video call, and was recorded and
transcribed. Each session lasted 90minutes in total. Each participant
received a $50 Amazon gift card. The study took place in the week
before the fall semester began.

6.2 Recruitment and participants
To target conversational programmers like those profiled in the
formative study, we recruited participants enrolled in a secondary
data-oriented programming course (the same course studied in the
formative study) who didn’t plan on becoming software developers
or analysts. Participants were eligible if they had no prior experi-
ence with the BeautifulSoup web scraping library. Since the study
took place before the start of the semester, participants had not
yet seen any of the content from the course, and it had often been
several months since participants had programmed last.

Seven students participated in the study. All participants were
female. Five participants were majoring in Information in the User
Experience track, and two were majoring in Business. Six partici-
pants had taken one prior programming course (either an introduc-
tory data-oriented Python course in the information major (5) or an
introductory C++ course in the Computer Science major (1)). One
participant had taken both the data-oriented Python course and the
C++ course. Participants expressed career goals of user experience
designer, product manager, and/or product designer.

6.3 Learners were able to complete scaffolded
writing, debugging, and code explanation
tasks

After completing the instructional content (average time 31.4 min-
utes), learners attempted scaffolded code writing, debugging, and

Table 2: Participants’ success and self-reported cognitive
load on scaffolded activities (n=7). Cognitive load is mea-
sured on a 9-point scale (Very very low mental effort (1) -
Very very high mental effort (9) [45]).

Activity Succeeded
without
assistance

Mean
cognitive
load

Writing 1 (order plan goals) 28.6% 4.33
Writing 2 (order plan code) 85.7% 4.78
Writing 3 (fill plan slots) 57.1% 6.67
Debugging 85.7% 4.38
Explanation 42.9% 6.78

explanation activities. These activities used different plan combi-
nations than learners had seen in instructional content examples.
Participants could reference plan instructional content while solv-
ing these problems.

6.3.1 Success in tasks. Results show that participants were able to
apply the plan knowledge they learned in the instructional content
to complete various scaffolded programming activities (see Table
2). Participants progressed from no prior experience with the Beau-
tifulSoup library to completing scaffolded coding activities after
about half an hour of instruction. This timeline is greatly acceler-
ated over the typical pattern of instruction and coding activities for
BeautifulSoup content in the data programming course, where in-
struction spans approximately five hours of lecture and discussion
section time, and assigned coding activities are expected to require
at least 30 minutes each.

There did appear to be some start-up difficulty, since learners
had the least amount of success without assistance on the first
activity they faced: ordering plan goals. This may have occurred
because the instructional content didn’t include explicit practice
about how to combine plans. All participants who didn’t complete
this activity on the first try were successful on the second try. This
is notable because the plan ordering problems included distractors,
which have been shown to increase difficulty on mixed-up code
problems [28]. "Flailing" is a behavior some learners exhibit when
solving "mixed-up-code" problems [18, 30]. "Flailers" re-order blocks
randomly until they reach a correct ordering, completing many
attempts. We observed only one instance of flailing, by P2 on the
second code writing activity.

6.3.2 Participants used purpose-first scaffolds to complete tasks.
We observed multiple ways that participants used purpose-first
scaffolds to complete these activities.

Looking at plans for help. When facing difficulty during the com-
pletion of plan slots during code writing, participants frequently
returned to instruction about plans for help. This approach allowed
participants to fix bugs in their code after a careful inspection of
prior plan examples.

Participants demonstrated that they could identify and make use
of relevant plan information for their problem-solving. Participants
typically referenced the plan page most relevant to their current
error or code authoring activity. Seventy-eight percent of all visits
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to a plan reference page were for a plan were the participant’s code
contained an error or was incomplete at the time of the page visit.

P6 was able to apply prior plan examples and instructional con-
tent to her current problem-solving and successfully complete the
code writing problem.

Okay. I’m going to look at this one. [P6 references
a plan page.] Yes. This was with the different profes-
sors, but it was just like this. (...) Okay. So I guess you
do need to keep that in. And then get out and then
tag.get(’href’) or you can do href for something else.
I think text maybe. Yes. Okay. (...) But in this example
it looks like they did the same sort of thing. And this
is finding, yeah, through multiple URLs. So it should
be the same class equals. I’m pretty sure this is a class.
Maybe it’s a that’s wrong. If it has to be div, I’m not
really sure the difference between a and div. Okay. Is
that right?

She visited a prior example that was most relevant to her current
task, found similarities, and applied knowledge from the example
to complete her code correctly.

Using goal and subgoal language. Participants often used sub-
goal language during their thinkaloud problem-solving, rather than
describing code syntax. P2 completed the explain code problem suc-
cessfully without assistance. Her thinkaloud is below, with subgoal
labels bolded.

Okay. Um... Load libraries for web scraping. Oh
this is just like... I don’t know... the soup thing is like
a library that exists and we’re just importing that
so you can use it to pull stuff from webpages. And
then get a soup from a URL... So they’re listing the
URL that they want to pull information from, I don’t
know what these lines do but they’re always there.
I’m going to get all tags of a certain type from the
soup, so this is the class name and this is the tag. Or
I guess this whole thing is the tag. Yeah. And then
looks like they’re making, they’re naming this empty
list and then they’re putting... It looks like they’re
putting... because this is supposed to get links. Maybe
they’re getting the specific tag from each link and
then putting that into this collect info list.Get a soup
from multiple URLs. URLs ending... base URL plus
ending. I don’t know why they would do this, why
you... A base URL... Maybe they’re trying to get... the
links, more info links, from each news page, news
story. Or maybe they want the news story... no. All
tags of a certain type. So yeah. I think they’re trying
to pull the text that you get when you click each of
these more info links and combine them into a list
and then print that list. Yeah. If that made sense.

P2 was able to trace through the subgoal labels, using some
relevant information from the code, to describe a complex program
consisting of five plans combined in a way she hadn’t seen before.

6.4 Conversational programmers are
motivated by purpose-first programming

After completing the curriculum, all participants expressed moti-
vation to continue learning with purpose-first programming ap-
proaches. "I could see myself really liking this curriculum for other
topics," said P1. P5 said, "If I could have one of these to do every week,
and then in two years I would be so much more well-versed in Python,
I would absolutely do it." "If you had any other thing besides web
scraping I’d gladly sign up," said P7.

How exactly does purpose-first programming motivate conver-
sational programmers? According to expectancy-value theory [17],
motivation for a task is influenced by a person’s expectation of
success on the task and their subjective value for the task. In the
post-curriculum interview, we explored learners’ feelings of success
and value for purpose-first programming. We analyzed participants’
responses using thematic analysis and report major themes below.

6.4.1 Participants felt success and enjoyment, which came from
understanding and completing problems. Participants largely felt
successful on the activities they completed in the curriculum, even
though they had moments of challenge and sometimes used re-
sources and hints. "Even though I had to look back at previous ex-
amples I still figured it out in the end, so I feel good," said P7. "I did
get frustrated, but I feel like I ended feeling pretty confident, like
oh, I think I could do this, I think I could learn this," said P3. While
most learners expressed a sentiment that they learned a signifi-
cant amount in the curriculum, P2 felt that solving problems by
referencing examples might be "copying" more than learning.

Feeling that they understood and accurately completed activities
was associated with participants’ success. "I wasn’t really sure what
to expect, but it walked me through so clearly that I was able to com-
plete the tasks very easily and feel like I actually did it successfully,"
shared P6. Some students expressed surprise at their level of success
in the curriculum. "I honestly feel like I did better than I expected to
do," said P5.

6.4.2 Learners perceived the purpose-first programming curricu-
lum as having low cognitive load. Participants frequently described
purpose-first programming as "separate steps" (P7) that "breaks it
down really easily" (P1) so they could think about "one at a time
instead of looking at it all" (P5). Participants explained that the ap-
proach clearly demonstrated how to apply knowledge. "Plans make
it easier to choose what method you should be using for each type
of situation," P2 said. Plans also allowed learners to focus on less
while problem-solving, with choices constrained to a small number.
P6 said, "The concept of web scraping, at first is kind of intimidating,
because it’s like, how do you get all this information? But the way
that the plans are written out, do you have one URL or do you have
2? Are you trying to get links or are you trying to get text? I feel like
the way it was explained was very clear."

This approach was different than most other programming ex-
periences participants had been through. P1 said, "previously it was
never building up to writing the code on my own. It was either really,
really easy questions, or really, really hard questions, and there was
no transition that really made it stick in my brain." P4 said that in her
previous programming course she struggled with "having a very
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general destination and not knowing how to get there. So I thought
that [purpose-first programming] was really helpful."

At the same time, the introduction to new domain knowledge
was a challenge that increased cognitive load. Participants had no
prior formal training in HTML, and while some had done self-study,
most had little HTML knowledge. P4 found so much new jargon
overwhelming, saying, "I feel like by the end of it, I had a better grasp
on it. But in the beginning I definitely felt like I had no idea what...it
all went over my head."

6.4.3 Conversational programmers expect purpose-first program-
ming to work best for people like themselves. When asked to describe
which types of people would learn best with purpose-first program-
ming, participants consistently named themselves, as beginners or
people who struggled with code. P3 said, "I think for someone like
me who wants a lot of help, who needs a lot of help to do well, and
wants a lot of examples and visuals and documentation, the plans
worked really well." "I think plans are pretty useful for beginners like
me," said P7. "I have to fail at the code 10 times before I realize what
I’m doing, so I guess I sort of like this," said P5.

On the other hand, participants felt that purpose-first program-
ming may be constraining for people with significant prior knowl-
edge or who were already succeeding at programming. P3 sug-
gested,"if everybody had to go through the plans it would feel frustrat-
ing or maybe even condescending to someone who was an advanced
programmer." "I think it’s just more of a beginner concept," said P6.

6.4.4 Some conversational programmers would rather learn with
purpose-first programming than code tracing. Some participants had
prior experience with PythonTutor [24], a program visualization
tool [60] designed to help novice programmers understand the
execution flow of programs. When comparing use of PythonTutor
to their experience with purpose-first programming, these learners
preferred purpose-first programming. "I mean I guess in theory
[PythonTutor] is useful but sometimes it gets so confusing," said P2.
"Having the plans is helpful because it’s like if I know what to do then
I can do it, but if I don’t know what to do then it’s like where do I
even start?" P3 said, "[PythonTutor] is a visual thing which I thought
would be helpful but honestly I hated it and never used it. And then
just from my experience [PythonTutor] was helpful for people who
knew programming really well, so it kind of feels like the plans might
be for more beginners."

On the other hand, P7 found the debugger in Visual Studio Code
to be a valuable tool for her deeper learning. "I think plans helped me
in the very beginning, but once I understand the concept, debugging
is what really helps me further my learning past the plans into more
real life scenarios."

6.4.5 Purpose-first programming is valuable because it helps with
basic and conceptual understanding. These conversational program-
mers desired general knowledge about programming concepts, and
felt that purpose-first programming helped them achieve that goal.
P2 said, "maybe I can’t explain it perfectly and explain each part in
depth but if I have like a general idea of what it’s doing I think that’s
helpful." P4 concurred, saying, "having a background in everything
as broad as you can is just the most helpful." P6 said, "I liked this
because you can focus on it more conceptually without worrying about
whether every part of your code is right."

6.4.6 Purpose-first programming is valuable because it is enjoyable.
Despite some general dislike of programming, most participants
said that they enjoyed completing the curriculum. "I think it was
really interesting and fun," said P1. P6 said, "I enjoyed it, considering
I’m not a computer science major or anything and I don’t really like
this type of stuff." Success often influenced enjoyment. "When I was
frustrated I didn’t [enjoy it]. But when I was getting things right like
in the debugging problem I was like yeah, I really like this," said P3.
P2 was the only participant who admitted that she didn’t really
enjoy completing the curriculum, but success on problems was a
bright spot. She said, "I don’t really like coding, I don’t really like it
but then when I got them right it was nice."

6.4.7 Purpose-first programming is valuable because it is realistic.
While these learners appreciated all the supports purpose-first
programming provides, they appreciated knowing that what they
were doing was "real". "I like that you have the compiler so you
could run code in the page," said P5. "I like that these examples use
real websites and [Information department] websites. It was super
interesting and you actually go to see that they worked and how they
worked," said P6. "I liked using the Rate My Professor websites because
they were like real life," said P7.

P6 felt her prior experience with block-based programming in
high school didn’t prepare her well for later text-based program-
ming. However, with purpose-first programming, dragging and
dropping blocks of code was helpful because it directly prepared
her for realistic code authoring later. She said, "We’re not really
dependent on the blocks. This is more of just a learning tool, but it’s
not how we do the code. We still type it."

7 DISCUSSION
We provide preliminary evidence that for conversational program-
mers, purpose-first programming instruction is less cognitively
difficult than typical instructional methods, leads to a feeling of
success, and is aligned with goals and needs, leading to value for
the activity. Compared to other experiences, like program visualiza-
tion tools, block-based programming, and traditional programming
assignments, conversational programmers preferred learning with
purpose-first programming methods.

7.1 Understanding how purpose-first
programming motivates conversational
programmers

Our results can be explained through the lens of expectancy-value
theory [17]. Expectancy-value theory states two factors most di-
rectly influence the choice to select and complete a task: (1) a per-
son’s expectation for success and (2) a person’s subjective value for
the task. Expectation for success involves a person’s task-specific
ability and self-concept, while subjective task value involves four
factors: (a) attainment value, when the task aligns with the per-
son’s self-image; (b) interest-enjoyment value, when the person
expects to enjoy the task; (c) utility value, when completing the
task helps the person achieve a goal; and (d) relative cost, where
value is decreased due to the loss of other potential opportunities.
In Eccles’ model, a person’s identity directly influences both ex-
pectancy of success and subjective task value. Identity includes
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Figure 8: Expectancy-value theory explains why conversational programmers are motivated by purpose-first programming

personal and social self-schemata, short and long-term goals, ideal
self, and self-concept of general ability.

Multiple factors influenced subjective task value for our partici-
pants (see Figure 8). They felt that the focus on basics and concepts
was appropriate for their future career goals, and they also felt that
this method of learning was a strong fit for their identity as begin-
ner programmers who did not have strong programming skills. In
addition, participants found the curriculum realistic because of its
use of runnable code and real website, and also largely found it
enjoyable, at least as far as learning to code could be enjoyable.

Expectation of success was influenced by the ease of the com-
pletion of activities and frequent feedback. While participants did
struggle on some activities, they typically felt successful in the
end, even when they needed to use help. Participants appreciated
how learning with purpose-first programming emphasized how to
achieve goals in a series of smaller steps.

7.2 Implications for future curriculum design
We provide preliminary evidence for the effectiveness of purpose-
first programming learning, but there aremany aspects of the design
of purpose-first programming learning environment that remain
to be studied. Future work should address both the cognitive and
motivational factors that can derail programming learning.

Our design was constrained by the abilities of the Runestone
ebook platform, but new tools designed specifically for purpose-first
programming could provide more efficient support. For example, in
our proof-of-concept, code highlighted with plan information was
separate from runnable code, which had traditional syntax high-
lighting. Future purpose-first programming systems could highlight
plans, slots, and subgoals within an editor, and offer the ability to
turn plan highlighting on or off to match the preferences of differ-
ent learners. In the proof-of-concept, our code writing process was
staged across activities, so assembling and tailoring plans took place

in separate steps. A dedicated purpose-first programming editor
could combine plan assembly and tailoring, offering the ability to
drag plan blocks, edit slots, and run code within a single editor. The
accessibility of plan information is another area for further design.
In the proof-of-concept, learners had to visit other pages to view
plan information and examples. In a future system, this information
could be made available in the editor itself with approaches like
pop-up windows or dynamic sidebars.

Developing domain-specific code plans that communicate au-
thenticity and achieve realistic goals but are also simple enough to
teach in a brief learning experience is also a future design challenge.
It’s unclear how tolerant conversational programmers will be of
"imagineering" [27] in their programming learning. Future work
should evaluate the trade-off between complexity and realism for
this population of learners.

8 CONCLUSION
In this paper, we conceptualized, developed, and evaluated purpose-
first programming, an approach to programming learning for novice
programmers who care more about what code can achieve than
how a programming language works. After completing a proof-of-
concept purpose-first programming curriculum with novel techni-
cal supports, novice conversational programmers were motivated
to learn future programming topics with purpose-first methods.
This motivation stemmed from a feeling of success, because learn-
ers could understand and complete problems, and alignment with
goals and self-identity, because learners found the content useful
and found the level of support appropriate for their needs. These
learners were able to utilize purpose-first supports to complete
scaffolded programming activities in a new topic area after only a
short period of instructional time.
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Our findings provide initial support for the effectiveness of
purpose-first programming as a motivating starting point for con-
versational programmers and other novice programmers during
programming learning. This work connects cognitive theories to
theories of motivation in order to present a new approach to pro-
gramming learning, designed specifically for novices who care
more about the opportunities to use code than the operation of
programming languages. As aspiring conversational programmers
study programming in greater numbers, the need for a different
instructional approach is becoming more apparent. Purpose-first
programming can provide a new pathway to programming learning,
designed with both the cognition and motivation of these learners
in mind. This work opens new avenues to computing, inviting a
broader group of learners to engage with programming, particularly
those who are less likely to find code semantics motivating.
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